Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway.

نویسندگان

  • M Jeffers
  • G A Taylor
  • K M Weidner
  • S Omura
  • G F Vande Woude
چکیده

The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular responses following activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF). In this communication we demonstrate that significant Met degradation is induced by HGF/SF and that this degradation can be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquitinated in response to ligand and that polyubiquitinated Met molecules, which are normally unstable, are stabilized by lactacystin. Both HGF/SF-induced degradation and polyubiquitination of Met were shown to be dependent on the receptor possessing intact tyrosine kinase activity. Finally, we found that a normally highly labile 55-kDa fragment of the Met receptor is stabilized by lactacystin and demonstrate that it represents a cell-associated remnant that is generated following the ligand-independent proteolytic cleavage of the Met receptor in its extracellular domain. This truncated Met molecule encompasses the kinase domain of the receptor and is itself tyrosine phosphorylated. We conclude that the ubiquitin-proteasome pathway plays a significant role in the degradation of the Met tyrosine kinase receptor as directed by ligand-dependent and -independent signals. We propose that this proteolytic pathway may be important for averting cellular transformation by desensitizing Met signaling following ligand stimulation and by eliminating potentially oncogenic fragments generated via extracellular cleavage of the Met receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin.

The ubiquitin-dependent proteasome-mediated (Ub-Pr) degradation pathway has been shown to regulate a large variety of substrates, including nuclear, cytosolic, and membrane proteins. In mammalian systems, polyubiquitin modification has been identified in a number of cell surface receptors for more than a decade; however, its biological significance has remained unclear until recently. For growt...

متن کامل

Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway.

Oncogenic forms of the Abl and Src tyrosine kinases trigger the destruction of the Abi proteins, a family of Abl-interacting proteins that antagonize the oncogenic potential of Abl after overexpression in fibroblasts. The destruction of the Abi proteins requires tyrosine kinase activity and is dependent on the ubiquitin-proteasome pathway. We show that degradation of the Abi proteins occurs thr...

متن کامل

Insulin/insulin-like growth factor (IGF) stimulation abrogates an association between a deubiquitinating enzyme USP7 and insulin receptor substrates (IRSs) followed by proteasomal degradation of IRSs.

Insulin receptor substrates (IRSs) play central roles in insulin/insulin-like growth factor (IGF) signaling and mediate a variety of their bioactivities. IRSs are tyrosine-phosphorylated by activated insulin receptor/IGF-I receptor tyrosine kinase in response to insulin/IGF, and are recognized by signaling molecules possessing the SH2 domain such as phosphatidylinositol 3-kinase (PI3K), leading...

متن کامل

Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination.

The Src family of nonreceptor tyrosine kinases are important regulators of a variety of cellular processes, including cytoskeletal organization, cell-cell contact, and cell-matrix adhesion. Activation of Src family kinases also can induce DNA synthesis and cellular proliferation; therefore, tight regulation of their kinase activities is important for the cell to maintain proliferative control. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 1997